

An Investigation of End-to-End Models for Robust Speech Recognition Archiki Prasad * , Preethi Jyothi * , and Rajbabu Velmurugan * *Indian Institute of Technology Bombay, India | 🖂 archikiprasad@gmail.com Implementation of MTL and AvT Introduction • Two approaches for robust adaptation of end-to-end (E2E) ASR systems: (i) Front-end Speech Enhancement followed by back-end E2E ASR Noise Labels CTC Noise Labels 0000000000 00000000000 Recognition • **Objective:** Compare these approaches when limited noise samples are available Mode 00000000000 000000000000 • Setup — E2E ASR: Deep Speech 2¹ pre-trained on clean speech (WER: 10.3) Gradient Reversal Layer 0000000 ↑ Noise Noise 1 Classifier Classifier 00000000000 Noise types: 'Babble', 'Airport/Station', 'Car', 'Metro', 'Cafe', 'Traffic', 'AC/Vacuum' Feature 000000000 L Extractor Speech Enhancement (SE) systems w/ back-end ASR MTL AvT Three different SE models: Spectrogram • SE-VCAE² Linear Layer Bi-directional LSTM Layer 2D Convolutional Layer • DeepXi³ (DeepMMSE) Baseline DS2 • DEMUCS⁴ **Performance Comparison** Issues: Fine-tuning Scarce noise data requires Enhanced Speech Methoc pretrained SE models Perception Scores 2. Both fine-tuning steps Robust DS2 Baseline demand extra compute 00000000000 Evaluation **SE-VCAE** 3. Perception scores do not WER . correlate with WER Deep Xi DEMUCS ML-based adaptation of E2E ASR Vanilla DA Soft-Freez • Data Augmentation-based Training (DAT): DAT • Vanilla DAT: Same learning rate across MTL ·--- DAT all layers of Deep Speech 2 AvT • Soft-Freeze DAT: Differential learning ----- MTL rates (LR): low LR at top, high at bottom ---- AvT • Multi-Task Learning (MTL): Disentangle noise information in the representations Robust DS2 0000000000 • Adversarial Training (AvT): Make the representations invariant to noise Takeaways

(ii) End-to-End ML-based adaptation for E2E ASR • Datasets: Clean Speech: LibriSpeech dataset (100 hours) Noise: Custom dataset with 2 hours in train and test set Pretrained SE oisy Speec module Fine-tuned SE Fine-tuning module Noisy Speecl Noisy Speech 00000000000 ML-based Training Paradigm 00000000000 Baseline DS2 Evaluation

References:

- 1. Amodei et al. Deep speech 2: End-to-end speech recognition in English and Mandarin. In ICML 2016
- 2. Braithwaite et al. Speech enhancement with variance constrained autoencoders. In InterSpeech 2019
- 3. Nicolson et al. Deep xi as a front-end for robust automatic speech recognition. (Arxiv)
- 4. Defossez et al. Real time speech enhancement in the waveform domain In InterSpeech 2020

d	WER under SNR (in dB)															
	Babble					Airport/Station					Metro					Cloop
	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	Clean
9	104.2	98.3	91.3	79.7	65.0	91.9	84.1	73.7	60.6	50.0	68.4	54.4	46.4	34.9	27.6	10.3
Ξ	85.6	76.4	61.9	54.7	39.7	78.0	68.3	56.8	46.3	39.3	54.0	43.6	38.6	33.0	29.6	15.9
İ	81.4	69.4	54.0	44.5	31.9	71.4	60.9	46.5	37.8	27.4	44.8	30.5	28.1	20.2	20.5	10.9
5	70.3	58.0	41.8	32.3	25.4	58.6	45.5	33.7	25.6	21.5	35.6	24.9	22.6	17.1	15.9	10.9
٩T	80.6	68.1	53.6	41.8	30.3	67.1	55.4	41.9	31.2	24.9	41.8	33.1	27.1	21.9	19.1	10.8
ze	77.4	65.5	52.2	38.5	28.3	64.2	52.9	39.0	29.2	23.7	40.8	30.7	27.0	21.3	18.6	10.9
	71.4	58.8	45.9	35.5	25.8	55.7	46.8	35.3	26.2	20.7	38.7	29.2	24.4	20.6	17.3	11.0
	66.8	55.1	39.5	31.1	24.6	53.8	43.3	33.4	25.2	20.9	36.1	26.5	22.6	18.4	17.8	13.1

• Noise type and level of stationarity determines the degree of degradation • DEMUCS performs the best across SNRs for Metro, followed by MLT and AvT • AvT performs the best across SNRs for degrading noises like Babble and Airport/Station • Our approaches (MTL and AvT) perform better than all SE methods other than DEMUCS

• Among speech enhancement, DEMUCS outperforms others on all measures • AvT is largely the best ML-based technique; however, noise invariance in representations causes degradation in clean speech and high SNR performance • The best technique for robust adaptation depends on the type of underlying noise