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Abstract

Providing natural language instructions in
prompts is a useful new paradigm for improv-
ing task performance of large language models
in a zero-shot setting. Recent work has aimed
to improve such prompts via manual rewrit-
ing or gradient-based tuning. However, man-
ual rewriting is time-consuming and requires
subjective interpretation, while gradient-based
tuning can be extremely computationally de-
manding for large models and may not be fea-
sible for API-based models. In this work, we
introduce Gradient-free Instructional Prompt
Search (GRIPS), a gradient-free, edit-based
search approach for improving task instructions
for large language models. GRIPS takes in in-
structions designed for humans and automati-
cally returns an improved, edited prompt, while
allowing for API-based tuning. With Instruct-
GPT models, GRIPS improves the average task
performance by up to 4.30 percentage points
on eight classification tasks from the NATU-
RAL-INSTRUCTIONS dataset (with similar im-
provements for OPT, BLOOM, and FLAN-
T5). We see improvements for both instruction-
only prompts and instruction + k-shot examples
prompts. Notably, GRIPS outperforms manual
rewriting and purely example-based prompts
while controlling for the available compute and
data budget. Further, performance of GRIPS is
comparable to select gradient-based tuning ap-
proaches. Qualitatively, we show our edits can
simplify instructions and at times make them
incoherent but nonetheless improve accuracy.1

1 Introduction

Recent advancements in prompting large language
models (LMs) such as GPT-3 show that models
can perform NLP tasks without any task-specific
tuning (Brown et al., 2020). Most of the work in
this area focuses on few-shot learning, where mod-
els rely on textual prompts containing input-output

1Code: https://github.com/archiki/GrIPS

example pairs (exemplar prompts). However, hu-
mans are often able to perform a new task when
provided with a relevant set of instructions or a
task description, not necessarily including any ex-
amples. In this direction, past works explore a
new paradigm of instructional prompts where a
prompt is tailored for a particular task by includ-
ing natural language instructions (Efrat and Levy,
2020; Mishra et al., 2022a,b). Following Webson
and Pavlick (2021), we characterize instructions
as a natural language description of the task that
includes what is required for a person to complete
the task correctly.2 Demonstrative examples of the
task are not considered a part of the instructions.

For purposes of improving task performance via
instructional prompts, Mishra et al. (2022b) pro-
vide a set of guidelines to manually rewrite raw
instructions. Yet this kind of rewriting process
requires substantial manual effort and subjective
interpretation of the guidelines. In addition, an un-
derlying assumption in Mishra et al. (2022b) is that
instructions should be semantically coherent to hu-
mans. However, it is possible that the prompts that
most improve model performance are semantically
confusing to humans in some ways.

Past works attempt to automatically improve
prompt quality for large LMs by means of prompt
tuning (Liu et al., 2021b). Existing prompt tun-
ing methods use gradient-based approaches which
have a few notable shortcomings. First, comput-
ing gradients with large LMs can be prohibitively
computationally demanding. Second, this is en-
tirely infeasible for models available only via APIs,
because model gradients and weights are not stan-
dardly accessible.3 Third, output continuous repre-
sentations may not directly map back onto tokens
in the original vocabulary. Thus, we cannot verify

2In general, whether an instruction is a sufficient descrip-
tion of a task depends on whom it is written for, i.e. people
with less task expertise require more background information.

3GPT-3 models can be finetuned on given data, but the
model parameters and gradients remain unavailable (source).

https://github.com/archiki/GrIPS
https://beta.openai.com/docs/guides/fine-tuning
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Figure 1: Overall Pipeline of GRIPS. The main steps are numbered. Modified candidates are shown in yellow and
the output instruction is in blue. We use ‘[ ]’ to show the syntactic phrase-level splits at which the edit operations
occur. Edited text is highlighted in red and the selected candidate (with highest score) is shown via a green arrow.

whether models are responding to prompts reason-
ably (Khashabi et al., 2021). For human readable
prompts, we can at least assess what words/phrases
trigger certain model behaviors and whether mod-
els respond reasonably (for instance, when models
learn from incoherent prompts, we are surprised).

In this paper, we propose Gradient-free
Instructional Prompt Search (GRIPS), an au-
tomated procedure for improving instructional
prompts via an iterative, local, edit-based, and
gradient-free search (shown in Fig. 1). In contrast
to gradient-based tuning, our method allows us to
improve instructions in prompts for arbitrary (in-
cluding API-based) language models, while main-
taining the human-readability of the resulting in-
structions. On eight classification tasks from the
NATURAL-INSTRUCTIONS (Mishra et al., 2022a),
GRIPS improves the average accuracy of GPT-
2 XL and InstructGPT (GPT-3) models by be-
tween 2.36 and 9.36 percentage points. We further
show that when gradient-information is available,
GRIPS is comparable if not outperforms parameter-
efficient tuning methods (Houlsby et al., 2019;
Li and Liang, 2021). Additionally, our searched
instructions outperform manual rewritten instruc-
tions (Mishra et al., 2022b) by 1.5 percentage
points on average for the InstructGPT curie en-
gine. With the same data and computational budget,
GRIPS outperforms search over in-context exam-
ples by about 1.6 points for InstructGPT. Lastly,
we consider initializing GRIPS with task-specific
instructions (from NATURAL-INSTRUCTIONS) ver-
sus task-agnostic instructions. While GRIPS im-
proves performance with both kinds of instructions,
performance is higher overall when starting with
task-specific instructions.
Contributions: In sum, our contributions include:

1. We propose GRIPS, an automated gradient-free
search over instructional prompts that improves
accuracy of GPT models by between 2.36 and
9.36 points on NATURAL-INSTRUCTIONS. We
also show improvements for OPT, BLOOM, and
FLAN-T5.

2. We show that GRIPS (a) outperforms manual
rewriting (Mishra et al., 2022b) and search over
exemplar prompts, (b) is comparable to select
gradient-based tuning methods, and (c) is ef-
fective for prompts containing both instructions
and examples.

3. GRIPS can improve instructions when using as
few as 20 data points for a performance signal
in scoring and when starting with either task-
specific or task-agnostic instructions.

2 Related Work

Our work builds on recent work in prompting large
language models, which Liu et al. (2021b) provide
a comprehensive literature survey for. We focus on
methods for improving model prompts here.

Exemplar Prompts. Few-shot learning for lan-
guage models to perform NLP tasks is an ac-
tive area of research (Schick and Schütze, 2021b;
Le Scao and Rush, 2021; Tam et al., 2021; Lo-
gan IV et al., 2021). Prompts in this line of work
are mainly composed of a number of input-output
examples (Schick and Schütze, 2021b; Le Scao
and Rush, 2021; Tam et al., 2021; Logan IV et al.,
2021). Additional text in these prompts is usually
a part of the prompt template itself (such as cloze
questions/pattern) and contains limited information
about the task.4 In contrast, our work focuses on

4By prompt template, we are referring to the choice of
cloze-question/pattern (typically a phrase or short sentence),



instructional prompts as described below.

Instructional Prompts. Instructional prompts
primarily contain detailed natural language descrip-
tions of the underlying task. Recent work focuses
on utilizing instructions given to human annota-
tors during data collection (Efrat and Levy, 2020;
Mishra et al., 2022a). Mishra et al. (2022b) propose
guidelines for manually rewriting instructions in or-
der to further improve performance of instructional
prompts. While Webson and Pavlick (2021) show
language models may struggle to truly understand
instructions, Wei et al. (2022); Sanh et al. (2022)
find finetuning on instructions and in-context ex-
amples in a hugely multi-task manner helps gener-
alization to other tasks. Lastly, Weller et al. (2020)
provide a dataset in which task descriptions are
formulated as questions. These questions are rel-
atively short and domain-specific, whereas the in-
structions in NATURAL-INSTRUCTIONS (Mishra
et al., 2022a; Wang et al., 2022) are longer and
correspond to more diverse tasks.

Prompt Tuning. Instead of limiting prompts to
natural language text, recent work explores training
continuous vector tokens in prompts via gradient-
based optimization (Liu et al., 2021c; Lester et al.,
2021; Li and Liang, 2021; Qin and Eisner, 2021).
Sun et al. (2022) aim to optimize continuous tokens
without using gradients, however, their technique
does not work for APIs that only allow modifying
text and not token embeddings (like for GPT-3).

Prompt Search. Zhao et al. (2021) find varying
the choice of training examples, example order per-
mutations, and template can alter the performance
of a prompt. Liu et al. (2021a) focus on selecting
in-context examples from a dataset, while Lu et al.
(2022); Kumar and Talukdar (2021) explore opti-
mal ordering of examples. Others manually write
effective prompt templates for NLP tasks (Petroni
et al., 2019; Brown et al., 2020; Schick and Schütze,
2021a,b,c). In principle, all prompt search meth-
ods treat the prompt text as a parameter space to
be optimized over (Andreas et al., 2018). Jiang
et al. (2020) and Gao et al. (2021) use automated
paraphrasing of the prompt templates. Inspired
by these works, GRIPS also has a functionality to
paraphrase select phrases of the instruction (§3.2.2).

verbalizer, or any structuring text around the training and
test example(s). In contrast, we consider instructions to be
more descriptive, multiple-sentence long and self-sufficient
to perform the task without any examples. See illustrative
examples of templates in Table 7 of Zhao et al. (2021).

Meanwhile, Shin et al. (2020) use a gradient-based
search to find trigger words in the prompt tem-
plate. While the above works focus on changing
the prompt template, we instead design a search
method for editing the content of task instructions.
Our search algorithm is also related to genetic algo-
rithms (Mitchell, 1998), where parent candidates
are mutated to generate offering (via our text-based
edit operations) to increase fitness under an objec-
tive (like our score function).

3 Methodology

In this section, we first describe and illustrate differ-
ent prompt modes (§3.1). Then, in §3.2, we outline
our search algorithm Gradient-free Instructional
Prompt Search (GRIPS) in detail.

3.1 Prompt Modes

We include instructions through two prompt modes:
Instruction-Only and Instruction + Examples (illus-
trated in Fig. 2). Here, prompt mode refers to the
choice and arrangement of the three components
(instruction, in-context examples, and test instance).
These prompt modes are also used in Mishra et al.
(2022a) (details in Appendix B). To obtain each
kind of prompt, we concatenate text from each of
its components. For example, the Instruction + Ex-
amples prompt contains instructions, followed by
examples, followed by the test instance.

3.2 Gradient-free Instructional Prompt
Search (GRIPS)

While instructional prompts improve the zero-shot
task performance of large LMs, the discrete na-
ture of these prompts and the significant compu-
tational cost of such models makes them hard to
optimize via gradient updates. In this work, we
propose Gradient-free Instructional Prompt Search
(GRIPS), which alleviates this problem by editing
instructions iteratively and greedily searching for
the best modification. The search is guided by
model performance on a small pool of examples
that are not a part of the test set (called the score
set S, |S| = 100 unless specified otherwise). The
score set can be thought of as a small train set for
each task.5 Note that examples in the score set

5We note that while |S| = 100 may not be a true few-shot
setting (Perez et al., 2021), this is a standard number of data
points for work in prompt tuning and search, as some works
use fewer points and some use many more (Gao et al., 2021;
Li and Liang, 2021). In §5.6, we show improvements with
GRIPS using as few as |S| = 20 examples.



   Your task is to 
 classify the tweet as "positive" or   
 "negative" based on its content. 

  Glad you enjoyed it. 

  positive 

  Awful! My gift card ran out. 

  negative

  I am certainly not 
 feeling good today...I have a cold. 

  

TEI Task Instruction In-context Examples Test Instance  Instruction-Only Prompts: 
           TI

 Examples-Only Prompts: 
    E T

 Instruction + Examples Prompts: 
                  I E T

Figure 2: Prompt modes consisting of different combinations of components: Instruction, In-context examples and
Test Instance. ‘⊕’ denotes concatenation. Instruction-Only prompts are purely instructional, whereas Examples-Only
prompts are exemplar in nature. Prompt mode Instruction + Examples is a combination of the two paradigms.

may have a skewed label distribution, so we use
balanced accuracy as our scoring metric, i.e. we
re-weight the accuracy across S to count all classes
equally (BalancedAccuracy below). Motivated
by Lu et al. (2022), we also include the entropy of
model predictions in the score function to promote
edited instructions that generate diverse labels. Let
Y be the label space of a task and ŷ be the model
prediction. If H is the entropy and α is a scaling
factor (we use α = 10), then the score function is:6

H =
∑
y∈Y

−pylog(py) ; py =
1

|S|

|S|∑
i=1

1(ŷi = y),

score = BalancedAccuracy + αH.

As illustrated in Fig. 1, the GRIPS algorithm
starts with an initial base instruction, and then at
each iteration, it generates m new candidates by
randomly selecting and applying l phrase-level edit
operations to each candidate. This results in a to-
tal of m × l sampled operations in each iteration
(phrase selection described below in §3.2.1 and edit
operations in §3.2.2). These candidates are then
scored based on the model performance on S. If
the score of the best candidate exceeds the score
of the current base instruction, then that candidate
is assigned as the base in the next iteration. Oth-
erwise, the search continues with the same base
instruction. The search stops when the score on S
does not improve for P iterations or a maximum
number of total iterations n is reached.

Beam Search. While the above search is greedy,
retaining only the best candidate in every iteration,
we can alternatively retain the top-B scoring candi-
dates. Subsequent iterations, contain B base candi-
dates for which we perform search individually and
the overall top-B scoring candidates move to the

6BalancedAccuracy is calculated on a scale of 0-100.
We can replace it with balanced cross entropy (see ablation
in Appendix C) for a small improvement in test performance
with a tradeoff of longer searching time.

next iteration until we reach the stopping criteria.
This search is more exhaustive and yields better
performance (refer to §5.3), however, it increases
the number of model evaluations by ≈ B-fold. We
refer readers to Appendix C for full pseudo-code.

3.2.1 Splitting Instructions into Phrases
As each instruction is a collection of sentences, edit
operations can be performed at the word, phrase,
or sentence level. In our preliminary experiments,
we find that working at an intermediate level, i.e.
phrases, is most helpful. This is likely because
phrase-level splits allow us to maintain the general
structure of instructions, while providing enough
flexibility for edits. In order to effectively split
each sentence into phrases, we use a state-of-the-
art CRF-based constituency parser (Zhang et al.,
2020a). Using the constituency tree, we combine
the leaves until we obtain disjoint phrase-level con-
stituents (S, VP, NP and other phrase-chunks) from
a sentence. This is illustrated via the blue square
brackets within instruction text in Fig. 1.

3.2.2 Edit Operations
Below, we describe edit operations used in GRIPS:
Delete (del). We remove all occurrences of the in-
put phrase from the instruction. The deleted phrase
is stored for subsequent use in the add operation.
Swap (swap). We take two phrases as input and
replace all occurrences of the first phrase in the
instruction with the second phrase and vice-versa.
Paraphrase (par). We replace all occurrences of
the input phrase with a corresponding paraphrase
generated using a publicly available PEGASUS-
based (Zhang et al., 2020b) paraphrase model from
HuggingFace (Wolf et al., 2020).7

Addition (add). We sample a phrase deleted in
previous iterations and add it back to the instruction
at a random phrase boundary.

These edit operations yield a broad space of
possible instructions including simpler, less ab-

7Model available at: https://huggingface.co/
tuner007/pegasus_paraphrase

https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase


Model No Search GRIPS

Majority Label 59.83 -

GPT-2 XL 49.54 (1.9) 58.90 (2.0)
InstructGPT babbage 55.80 (2.5) 60.09 (3.7)
InstructGPT curie 63.71 (1.9) 66.07 (1.6)

Table 1: Impact of GRIPS with Instruction-Only
prompts. Average accuracy (%) on 8 tasks from NATU-
RAL-INSTRUCTIONS. In majority label, we output most
frequent label for all test instances. 95% confidence
intervals in parentheses. curie is the largest model.

stract instructions with fewer details. Such edits
enable GRIPS to emulate the guidelines suggested
by Mishra et al. (2022b) that also limit details and
abstractions. Moreover, GRIPS can explore dif-
ferent phrasing styles and add previously removed
details back into instructions, since these properties
may occasionally be useful to models. We draw
inspiration from operations used in sentence simpli-
fication work of Kumar et al. (2020). Empirically,
the effectiveness of edits is shown in §5.1.

4 Experimental Setup

Dataset. NATURAL-INSTRUCTIONS (Mishra
et al., 2022a; Wang et al., 2022) consists of a set
of tasks, each comprised of task instructions, and
labeled examples. Due to cost and API quota
constraints (discussed below) we confine ourselves
to a subset of 8 diverse binary classification tasks
from this dataset.

Test Sets. Following Mishra et al. (2022a), we
subsample examples from the aforementioned
dataset to create test sets. For the main results (in
Table 1), the test sets consist of 300 random sam-
ples per task. Due to financial costs, all other analy-
sis and ablation experiments in §5 are evaluated on
subsets of 100 test examples per task (hence, num-
bers vary between Table 1 and subsequent tables).

Models. We use GPT models (Radford et al.,
2018, 2019; Brown et al., 2020) with ≥1B param-
eters, specifically GPT-2 XL (1.5B parameters),
InstructGPT babbage, and curie.8 Relative to
standard GPT-3 models, InstructGPT models are
specially designed to follow task instructions and
therefore are a natural choice in our work (Ouyang

8While we know that curie is larger than babbage, the
exact model sizes for engines on OpenAI API are not officially
available. The sizes of babbage and curie models are
estimated as 1.3B and 6.7B parameters (source).

Method Accuracy

No Search 48.38

GRIPS 53.68
- entropy in score 52.20 (-1.48)
- del operation 51.12 (-2.56)
- swap operation 52.67 (-1.01)
- par operation 52.54 (-1.14)
- add operation 52.42 (-1.26)

Table 2: Impact of design choice on GRIPS with
Instruction-Only prompts and GPT-2 XL model.
Change in performance relative to GRIPS in brackets.

et al., 2022). In light of the cost constraints in run-
ning experiments (discussed below), we did not ex-
periment with the davinci engine (largest model)
that is known to exhibit stronger performance on
several NLP tasks (Brown et al., 2020).

Cost. A single run of GRIPS on a task requires
O(m×n×|S|×B) model evaluations. We worked
with a $600 per month academic quota on the Ope-
nAI API. Each search run (across 8 tasks) on the In-
structGPT babbage and curie models costs be-
tween $20-25 and $125-175 respectively per seed.
The total financial cost for all the experiments ≈
$2400. We note that after running GRIPS and ob-
taining the modified searched instruction, the cost
of evaluation on the test set is significantly smaller,
a total of ≈ $150 for all the results in this work.

Hyperparameters. We set number of edit oper-
ations per candidate l = 1, number of candidates
per iteration m = 5, number of iterations n = 10,
and patience P = 2. Search is greedy and run for
3 seeds for each task unless specified otherwise.

Additional details about the dataset, models, and
choice of hyperparameters are in Appendix A.

5 Results and Discussion

In this section, we present the results of our ex-
periments. First, we establish the effectiveness of
GRIPS across models in §5.1. Then, we compare
our search to other methods in §5.2 and §5.3 and
provide additional analysis in subsequent sections.

5.1 Effectiveness of GRIPS

Our main results are shown in Table 1. On average
across tasks, GRIPS improves accuracy for GPT-2
XL, InstructGPT babbage and curie by 9.36,
4.29, and 2.36 percentage points respectively that

https://blog.eleuther.ai/gpt3-model-sizes/


Prompt Method GPT-2 XL InstructGPT

babbage curie

Inst. Only
No Search 48.38 55.37 57.25

Manual Rewriting 47.70 55.50 57.87
GRIPS 53.68 57.79 59.37

Ex. Only No Search 51.50 55.29 56.13
Example Search 56.00 56.25 57.75

Inst. + Ex. No Search 52.40 55.70 57.65
GRIPS 54.40 57.88 59.44

Table 3: Accuracy (%) comparison of different methods
in all three prompt modes. ‘Inst.’ and ‘Ex.’ are used to
abbreviate instruction and examples. During no search,
we use a random set of examples wherever indicated.

is statistically significant at the p < 0.05 level.9 Ac-
curacy for each method is averaged across test data,
seeds, and tasks. Although curie has a smaller
margin of improvement compared to babbage,
the results on curie display greater stability (see
smaller confidence intervals in Table 1).

Our results corroborate that larger InstructGPT
models outperform smaller, non-InstructGPT coun-
terparts (Ouyang et al., 2022). We see significant
gains in accuracy on moving from GPT-2 XL to
babbage and from babbage to curie.

Ablations. In Table 2, we evaluate several de-
sign choices in §3.2 on GPT-2 XL. First, we ob-
serve that removing the entropy term from the
score function decreases accuracy by −1.48 points.
We find this term helps breaks ties between can-
didates with similar performance on S in favor of
less skewed-predictions and avoids local minima.
Next, we re-run GRIPS with all but one edit opera-
tions and find that removing del, swap, par, and
add operations drops accuracy by −2.56, −1.01,
−1.14 and −1.26 points respectively, thus indicat-
ing that GRIPS benefits from all edit operations.
Appendix C contains additional design ablations.

5.2 Comparing with Gradient-free Methods

Prior work in prompting often employs manual
rewriting or searching good examples for k-shot
learning. Since these approaches are also gradient-
free, we provide a comparison with GRIPS below.

Manual Rewriting. Closest to our setting,

9We perform two-sided hypothesis tests for these im-
provements by bootstrap with examples and random seeds
resampled 100k times (Efron and Tibshirani, 1994).

Method %Param Accuracy

GPT-2 XL 0 48.38

+ Direct Finetuning 100 55.88
+ Adapters (Houlsby et al., 2019) 3 55.08
+ Prefix-Tuning (Li and Liang, 2021) 3 53.29

- MLP Reparametrization 0.1 51.12

+ GRIPS (Ours) 0 53.68
+ beam search; B = 5 (Ours) 0 56.50

Table 4: Comparison of GRIPS with gradient-based
methods. GPT-2 XL and GRIPS use Instruction-Only
prompts. %Param denotes number of parameters used
relative to size of GPT-2 XL.

Mishra et al. (2022b) provide five broad guidelines
for writing instructional prompts that improve task
performance. These guidelines recommend use
low-level, specialized instructions and removal of
generic, abstract and redundant details. As the fi-
nal rewritten instructions are not available for most
tasks, we perform the rewriting process ourselves
(described in detail in Appendix E).

Example Search. We use a simple but effective
algorithm that allows us to fairly compare against
GRIPS. At each step, we form a prompt by ran-
domly sampling k examples from the score set and
then compute the model performance on the re-
maining points. The search runs for a max number
of iterations, then the best example-set is used for
evaluation. Note that k will vary by task; we fit
as many examples as we can in the space of 1024
tokens (between 8 and 28, for our tasks). We use
the same score set for example search as GRIPS.
Further, the number of iterations is set such we
use the same maximum number of model queries
as GRIPS.10 We note that relative to our example
search, one could find a different example-set for
each test instance (Liu et al., 2021a), use a genetic
algorithm (Kumar and Talukdar, 2021), or alternate
search heuristics (Lu et al., 2022).

Results. First, Table 3 shows that our search out-
performs manual rewriting for all models, by 5.56,
2.29 and 1.50 points for GPT-2 XL, InstructGPT
babbage and curie, respectively. Next we ob-
serve that example search outperforms GRIPS for
GPT-2 XL. However, when we use the InstructGPT
models that have been designed to follow textual

10The financial cost of Examples-Only search is consid-
erably higher than GRIPS. Instructions are typically much
shorter than the 1024 tokens worth of examples, and therefore
model queries with Instruction-Only prompts cost less than
Examples-Only prompts in the OpenAI API.



Model Initialization No Search GRIPS

GPT-2 XL Task-Specific 48.38 53.68
InstructGPT babbage Task-Specific 55.37 57.79
InstructGPT curie Task-Specific 57.25 59.37

GPT-2 XL Task-Agnostic 51.87 54.29
InstructGPT babbage Task-Agnostic 52.37 54.41
InstructGPT curie Task-Agnostic 53.75 55.96

Table 5: Accuracy (%) for task-specific or task-agnostic
initial instructions with Instruction-Only prompts.

instructions better (Ouyang et al., 2022), GRIPS
outperforms the exemplar prompt search (by 1.54
and 1.62 points for babbage and curie respec-
tively). In Appendix E, we find that the number of
tasks where performance improves is highest for
GRIPS across models.

5.3 Comparing with Gradient-based Methods

Our gradient-free design enables the use of GRIPS
with larger API-based InstructGPT models. How-
ever, when gradient-information is available, we
compare GRIPS to direct finetuning and other
parameter-efficient methods using GPT-2 XL.

Methods and Setup. We explore three represen-
tative gradient-based approaches: direct finetun-
ing, adapters (Houlsby et al., 2019), and prefix-
tuning (Li and Liang, 2021).11 For the latter, we
use prefix length = 5 and include a setting without
MLP reparametrization. To ensure a fair compar-
ison with GRIPS, for each task we perform an
80 : 20 split of the score set into train and dev sets.

Results. The comparison is presented in Table 4.
Among gradient-based methods, we find direct
finetuning is most effective, followed by adapter-
tuning. Both approaches outperform GRIPS
(greedy decoding) by 2.2 and 1.4 points respec-
tively. However, exploring the search space more
extensively using beam search improves perfor-
mance of GRIPS by 2.82 points, outperforming all
methods without using any gradient information.12

We also observe that GRIPS outperforms prefix-
tuning by up to 2.56 and 5.38 points using greedy
and beam search respectively. Since prefix-tuning
upper bounds performance of AutoPrompt (Shin
et al., 2020; Li and Liang, 2021), we expect GRIPS
to outperform AutoPrompt as well. Note that the

11These methods only use test input and not instructions.
12Due to cost constrains, we do not use beam search with

InstructGPT, although we expect it to improve performance.

Model # Param No Search GRIPS

OPT

1.3B 46.38 53.3
2.7B 47.5 53.95
6.7B 48.63 54.41
30B 49.75 55.1

BLOOM 1B 46.38 52.75
3B 48.0 53.96

GPT-J 6B 47.25 54.67
GPT-NeoX 20B 47.75 54.85

FLAN-T5† 3B 71.25 74.33

Table 6: Accuracy (%) of GRIPS for various other
large language models with Instruction-Only prompts.
†Chung et al. (2022) use NATURAL-INSTRUCTIONS
dataset during instruction-tuning.

gradient-based approaches mentioned above cannot
be used with API-based models (like InstructGPT)
where gradients are not accessible.

5.4 Task Specific vs Agnostic Instructions

GRIPS is contingent on the instruction that we
use to initialize the search. We aim to understand
the impact of initialization by comparing two set-
tings with semantically distinct initial instructions,
task-specific and task-agnostic (examples shown in
Appendix F). Task-specific instructions are taken
from the NATURAL INSTRUCTIONS dataset and
contain information about the task, expected out-
puts, and the conditions under which a particular
output is correct. Task-agnostic instructions only
contain some generic text and a list of all possi-
ble labels corresponding to the task, but no other
meaningful information about the task.

In Table 5, we find that GRIPS is effective in
both task-specific and task-agnostic settings with
improvements up to 5.30 and 2.42 points, respec-
tively. Interestingly, GPT-2 XL performs better
with task-agnostic instructions as compared to task-
specific ones. InstructGPT systems, on the con-
trary, show better performance with task-specific
instructions both before and after search indicating
task-relevant semantics of (initial) instructions can
play a significant role in task performance.

5.5 GRIPS with other Open-Source Models

Similar to other instruction-based methods, GRIPS
works best when models can follow declarative
instructions and are responsive to changes to in-
structions (shown in Appendix D). While this may
not be the case for standard pretrained large lan-
guage models, we nevertheless show that GRIPS
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Figure 3: Impact of |S| on search and downstream aver-
age task accuracy for InstructGPT babbage.

can be effectively used with other models such as
GPT-J (Komatsuzaki, 2021), GPT-NeoX (Black
et al., 2022), OPT (Zhang et al., 2022) and
BLOOM (Scao et al., 2022).

In Table 6, we observe that GRIPS can still im-
prove performance of all the aforementioned mod-
els by nearly 6-7 points. Furthermore, we find that
OPT, BLOOM and other larger publicly available
GPT variants lack instruction-following ability as
compared to InstructGPT models (also noted in
Zhang et al. (2022)). The accuracy of these models
prior to search is very similar to GPT-2 XL despite
being larger in scale and fall short of the Instruct-
GPT models (refer to Table 3). This demonstrates
the advantage of using instruction-tuned models
like InstructGPT in our setting. Finally, we use
GRIPS on another publicly available instruction-
tuned model named FLAN-T5 (Chung et al., 2022)
and find a 3.08 point performance improvement.
Here, we observe significantly higher average task
accuracy even prior to search, which we attribute
to the use of NATURAL-INSTRUCTIONS dataset
in the instruction finetuning (Chung et al., 2022),
possibly exposing the model to the test instances
as well as the task instructions.

5.6 GRIPS is Effective for Smaller Score Sets

While we use a score set of size |S| = 100 by
default, it would be preferable to use as little data as
possible, all else equal. Therefore, we investigate
the effectiveness of GRIPS in a setting with limited
data available for the score set.

In Fig. 3, we experiment with a score set of size
100, 50 or 20. We first observe that as the size
of the score set decreases, the margin of improve-
ment from the search declines as well (4.27 point
gain when |S| = 100 versus 1.0 point gain when
|S| = 20). This trend is expected because using
fewer examples in the S is equivalent to having
a smaller train set, and thus we expect the model
generalization to be worse. For very limited data
settings, it is still useful that we see improvements

in accuracy by 1.0 point using as few as |S| = 20
data points. Our results also suggest that when
more data is available, increasing |S| can lead to
further performance improvements.

5.7 Semantics of Searched Instructions
Table 7 (and Appendix G) contains some searched
instructions by GRIPS. We analyze these examples
below, discussing edits made by GRIPS that appear
reasonable to a human reader, as well as edits that
render the instructions semantically incoherent.

For Task 021, GRIPS with InstructGPT curie
yields a relatively coherent yet simple instruction
by replacing “grammatical or logical errors” with
“errors.” For GPT-2 XL, replacing “is correct”
with “indicating no” makes the instruction incoher-
ent and actively misleading (i.e. respond via no
if correct, contrary to the original instruction), but
this change still improves model performance. For
Task 137, we find GRIPS with GPT-2 XL stops
early and returns original instruction. Interestingly,
for InstructGPT curie, the definition of toxicity
is entirely deleted. Finally, we see semantically in-
coherent edits occur for Task 195 with no informa-
tion about possible labels (‘positive’ or ‘negative’).
While this may be counter-intuitive to humans, it
works well for models and improves accuracy.

These findings build upon results from Webson
and Pavlick (2021), who find “irrelevant” or “mis-
leading” instructions (in people’s eyes) for entail-
ment task can outperform “good” instructions (with
few notable exceptions using T0 models). Yet in
§5.4, we observed that InstructGPT models per-
form better with task-specific instructions. Overall,
our results suggest that these LMs can respond sen-
sibly to semantic changes in instructions to some
extent. As with the study of in-context learning
mechanisms (Xie et al., 2022; Razeghi et al., 2022;
Min et al., 2022), how models utilize instructions
remains largely unknown and merits further study.

5.8 Effectiveness of GRIPS on Instruction +
Examples Prompts

Lastly, we show that GRIPS can also be applied
to Instruction + Example prompts (refer to Fig. 2)
that contain k additional labeled examples before
the test instance. Unlike in §5.2, we set the number
of examples to k = 4 across all tasks, as higher
values of k make the financial cost prohibitively
large. In order to mitigate majority label bias in the
prompts (Zhao et al., 2021), we use equal number
of examples from each label in the prompt. Since



Condition Instructions
Ta

sk
02

1

Original Task-Specific
A question that is free of any grammatical or logical errors, should be labeled ‘yes’, otherwise it should be indicated as
‘no’. A question is grammatically correct if all its entities i.e. nouns, verbs, adjectives, prepositions, pronouns, adverbs
are at appropriate position. A question is logically correct if the semantic makes sense.

After
GRIPS

GPT-2 XL

A question that is free of any grammatical or logical errors, should be labeled ‘yes’, otherwise should be indicated as ‘no’
. should be indicated as ‘no’ is grammatically correct if all s entities i.e . nouns, verbs, adjectives, prepositions, pronouns,
adverbs are at appropriate position . should be indicated as ‘no’ is logically correct if the semantic makes sense.

InstructGPT curie
There is a question that is free of errors should be labeled ‘yes’, otherwise it should be indicated as ‘no’ . A question is
grammatically correct if all its entities i.e . nouns, verbs, adjectives, prepositions, pronouns, adverbs are at appropriate
position . A question is Correct logically if the semantic makes sense.

Ta
sk

13
7

Original Task-Specific Given a prompt and two completions from a language model, select the completion that is the least toxic with respect to
continuing the prompt. Toxicity is defined as a rude, disrespectful, or unreasonable statement that is likely to make you
leave a discussion. Generate either Completion A or Completion B.

After
GRIPS

GPT-2 XL Returned Original

InstructGPT curie
The model was given a prompt and two completions, select the completion that is the least toxic with respect to
continuing the prompt . . Generate either Completion A or Completion B.

Ta
sk

19
5 Original Task-Specific In this task, you are given a text from tweets. Your task is to classify given tweet text into two categories: 1) positive,

and 2) negative based on its content.

After
GRIPS

GPT-2 XL In this task, you are given a text from tweets . There.

InstructGPT curie in this task, you are given a text from tweets . In this task.

Table 7: Examples of different instructions for Task 021, Task 137 and Task 195 and different models. All above
instruction edits improve model performance, even semantically incoherent edits.

the choice of examples varies with the random seed,
we use 5 seeds instead of 3 for these experiments.

Table 3 demonstrates that our search is effec-
tive in this setting across all models, improving
accuracy by roughly 2 points. For InstructGPT
models, there is surprisingly little difference in per-
formance between Instruction-Only and Instruc-
tion+Examples modes (< 0.1 percentage points).
For both babbage and curie, however, the
prompts containing instructions outperform the
Examples-Only prompts, by about 1.6 points. Ex-
ample search is the best approach for GPT-2 XL,
likely because it is not designed to use instructions
in the manner that InstructGPT models are.

6 Conclusion

We introduce GRIPS, an automatic search algo-
rithm that edits task instructions to improve down-
stream task performance. We demonstrate that
GRIPS is effective for GPT-2 XL, InstructGPT
babbage, and curie for Instruction-Only and
Instruction + Examples prompts. Comparisons
with manual rewriting and example search show
that GRIPS outperforms these methods, suggesting
that widely exploring the space of model instruc-
tions is an effective method for improving model
performance. Furthermore, we find that at the ex-
pense of increased compute, GRIPS with beam
search is at least comparable in performance to
gradient-based tuning. We show that our search is
effective when starting with task-agnostic instruc-

tions and that it also works with as few as 20 exam-
ples in the score set. Qualitative analysis confirms
that even 1B+ size InstructGPT models can be im-
proved via semantically incoherent instructions.
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Limitations

Our edit operations currently do not have the ca-
pability to add significantly new and pertinent in-
formation or sentences to the instruction, outside
of what is available initially in the dataset. Adding
such advanced generation abilities to the add op-
eration is a challenging and interesting direction
for future work by the community building on
top of our work. However, in the current version,
GRIPS has the ability to find alternate ways of
phrasing the current information, removing irrel-
evant details and changing the structure of the in-
structions in terms of placement. Further, a frame-



work like GRIPS may not be as effective for purely
generation-based tasks due to lack of good met-
rics to replace the accuracy in the score function.
Additionally, we note that language models with
better understanding of instructions may need less
optimization of their prompts in order to perform
tasks well. Hence, prompt engineering methods
in general may not be as useful for models with
increased prompt understanding. Lastly, we do not
test on the largest InstructGPT model (davinci)
due to cost constraints.

Ethical Considerations

Instructions are a useful tool to convey extrinsic
information to large language models and alter
model outputs, e.g. by instructing models to gen-
erate less harmful content. The intended use of
GRIPS is to obtain instructions that work well for
language models and help improve model perfor-
mance on a given task. In our work, we use in-
structions from NATURAL-INSTRUCTIONS where
Mishra et al. (2022a); Wang et al. (2022) ensure
quality control. For the tasks that we use, we ver-
ify that the instructions do not have a malicious or
adversarial intent. Similar to methods prompting
large language models, our proposed search can
unfortunately be misused intentionally or uninten-
tionally (Weidinger et al., 2021) to elicit harmful,
biased and problematic outputs for maliciously-
designed or adversarial inputs and/or instructions.
Furthermore, we do not encourage using instruc-
tion search for any high-stakes applications (like
hiring, admissions, allocating resources, etc.). Nev-
ertheless, we encourage future works to study and
mitigate these underlying issues of large models
and hope that our method is used responsibly.
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Appendix

A Additional Experimental Details

Dataset. In Table 8, we provide details about
the 8 classification tasks from the NATURAL-
INSTRUCTIONS dataset that are used in this work.
The first 4 tasks are present in the original ver-
sion (v1) of the dataset released in Mishra et al.
(2022a). As shown in Table 8, the label distribu-
tions in these tasks examples are extremely skewed
towards one label (> 90%). We chose the remain-
ing 4 tasks from next release (v2), curated by Wang
et al. (2022), such that (a) the label space and in-
structions are diverse in length, nature of the task,
and label tokens; (b) the datasets are more bal-
anced and less skewed towards one label; and (c)
the dataset was stable on the github repository,13

i.e. without any recent commits or modifications
for at least 1 month. Note that our experimenta-
tion started in October 2021 when newer tasks were
being added or modified on a daily or weekly basis.

Sampling Test Set. In all test sets, data is sam-
pled such that the sets are as balanced as possible,
given that some tasks have highly skewed labels.
If a label lacks enough data points to perfectly bal-
ance the data, we use all the examples from that
label and then randomly sample from the other
labels to fill the set. The task-level performance
before and after search on the large test set (300
samples) is shown in Figure 4.

Models and Classification. By babbage
and curie, we are referring to the
text-babbage-001 and text-curie-001
model versions on the OpenAI API. Following
Zhao et al. (2021), classification tasks are per-
formed by computing log-probabilities of the
label tokens using the completion function of the

13Datset: https://github.com/allenai/
natural-instructions. Information about each task
and user-friendly API to explore the data is available at
https://instructions.apps.allenai.org/

Algorithm 1 Our search algorithm: GRIPS
1: base← init ▷ Initialize base candidate
2: sbase ← score(base) ▷ Score using examples in S
3: Ω← {del,swap,par,add} ▷ Set of edit operations
4: ρ← P ▷ Patience for early-stop
5: for i = 1, · · · , n do ▷ n: number of iterations
6: for j = 1, · · · ,m do ▷ m: number of candidates
7: Sample e1, · · · , el ∈ Ω ▷ l edits per candidate
8: C[j]← edit(base, e1 ◦ · · · ◦ el)
9: s[j]← score(C[j]) ▷ Score above candidate

10: end for
11: k ← argmaxj s[j]
12: best← C[k] ▷ Best Candidate
13: sbest ← s[k] ▷ Score of best candidate
14: if sbest > sbase then ▷ Candidate better than base
15: base← best ▷ Use this candidate in next step
16: sbase ← sbest ▷ Update base score
17: ρ← P ▷ Refresh patience
18: else
19: if ρ > 0 then ▷ Patience not exhausted
20: decrement ρ
21: continue ▷ Continue search with same base
22: else
23: return base ▷ Early-stop criteria met
24: end if
25: end if
26: end for
27: return base ▷ Search terminates after last iteration

OpenAI API. The final prediction is obtained
by taking argmax over these label probabilities.
Note that our setting is different from Mishra et al.
(2022a,b) in that we do not formulate classification
as a text generation task with ROUGE as the
evaluation metric. This allows them to evaluate
tasks involving free-form question generation,
answer generation, incorrect answer generation
and modification. However, due to a high nature
of subjectivity and variation in model outputs
and drawbacks of automatic metrics such as
ROUGE-L for generation, we did not consider
these tasks for searching instructions. By sticking
to the classification tasks we were able to use
label probabilities and focus on accuracy as our
performance metric. We leave exploration of
GrIPS for generative tasks for future work.

GPU Compute. As GRIPS does not involve ad-
ditional training or finetuning of the language mod-
els, all our experiments are light weight. Only
GPT-2 XL requires GPU access which takes about
10 minutes per task (only evaluation of prompts)
and for all experiments combined uses little over
5 GPU hours on an NVIDIA A100 40 GB GPU.
Experiments with InstructGPT models use the Ope-
nAI API and do not require any GPUs for running.

Hyperparameter Search. Due to financial con-
straints, hyperparameter tuning was conducted us-

https://arxiv.org/abs/2205.01068
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
https://github.com/allenai/natural-instructions
https://github.com/allenai/natural-instructions
https://instructions.apps.allenai.org/
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Figure 4: Performance before search (no shading) and after search (shaded with dots) across tasks and models using
the Instruction-Only prompts. Error bars show 95% confidence intervals.

Task ID Task Objective Instruction Length Label Space Skewness (%)

019 Verifying the temporal reasoning category of a
given question

13 sentences/199 words Yes/No 91.5

021 Checking grammatical and logical correctness
of a question

3 sentences/53 words Yes/No 94.83

022 Identifying inappropriate content in context
sentences

2 sentences/33 words Yes/No 93.59

050 Finding answerability of questions based on a
given sentence

3 sentences/61 words Yes/No 94.81

069 Choosing text that completes a story based on
given beginning and ending

3 sentences/53 words 1/2 50.0

137 Given a prompt and two completions, deter-
mine which completion is less toxic

3 sentences/50 words Completion A/B 50.0

139 Given a prompt and two completions, deter-
mine which completion is more topical

4 sentences/68 words Completion A/B 50.0

195 Given a tweet, classify its sentiment as either
positive or negative

2 sentences/30 words positive/negative 50.0

Table 8: Details of the 8 classification tasks taken from NATURAL-INSTRUCTIONS dataset. Skewness measures the
number of examples corresponding to the most frequent label relative to the total number of examples.

ing line search using smaller (and cheaper) models
like GPT-2 L and XL and on select tasks during
preliminary experiments. We first considered the
number of edit operations applied to each candidate
in one iteration (l ∈ {1, 2, 3}), followed by a com-
bination of number of candidates and number of
iterations, i.e. (m,n) ∈ {(10, 5), (5, 10), (2, 25)}.
We increased patience P as we reduced the number
of candidates (m = 10 ⇒ P = 1,m = 5 ⇒ P =
2, and m = 2 ⇒ P = 4) in order to ensure that
the search did not end prematurely. We observed
that changing l led to only marginal difference in
performance and found l = 1 to be most effective.
We set m = 5, n = 10, and P = 2 in our experi-
ments. We found that when using m = 10, n = 5
we explored several edited candidates for the same
base instruction but ran the search for fewer itera-
tions which turned out to be less effective. How-
ever, exploring too few candidates m = 2, n = 25
was also not effective as we often proceeded to the
next iteration with sub-optimal edits. We did not
explore the choice of edit operations and used all 4
possible edits sampled randomly in order to ensure
that our candidates were as diverse as possible.

B Prompt Template vs Instructions

The terminology used in this paper differs slightly
from Mishra et al. (2022a). The term ‘instructions’
in our work corresponds to their term ‘definition’.
Additionally, to keep the prompt templates used in
this work compatible with theirs, we still use the
word ‘definition’ in the prompt template instead
of ‘instruction’. This is also consistent with the
schema in NATURAL-INSTRUCTIONS. Prompts in
Fig. 1 and 2 are for representative purposes and to
facilitate the understanding of the readers.

The above choices between ‘definition’ and ‘in-
struction’ is only one example of possible template-
level changes. In principle, we can use any word
or prefix before the actual instructions, examples
and test instances. For example, for the prompt
shown in Fig. 2, we can replace Instruction
with Definition, Input with Sentence,
Output with Label, etc. Each of these changes
will result in a new prompt template. While these
changes are subtle, empirically Zhao et al. (2021)
show that models are sensitive to such changes.
Since our objective is to explore better ways of
leveraging instructions, we keep these template



Algorithm 2 GRIPS with Beam Search
1: base← {init} ▷ Set with B elements
2: sbase ← {score(init)} ▷ Set with B elements
3: Ω← {del,swap,par,add}
4: ρ← P
5: for i = 1, · · · , n do
6: for b = 1, · · · , B do
7: for j = 1, · · · ,m do
8: Sample e1, · · · , el ∈ Ω
9: Cb[j]← edit(base[b], e1 ◦ · · · ◦ el)

10: sb[j]← score(Cb[j])
11: end for
12: end for
13: C ← {C1; · · · ; CB ; base} ▷ Concatenate candidates
14: s← {s1; · · · ; sB ; sbase} ▷ Concatenate scores
15: {kb}Bb=1 ← argmaxj s[j] ▷ Find top-B scores
16: best← {C[k1], · · · , C[kB ]}
17: sbest ← {s[k1], · · · , s[kB ]}
18: if best ̸= base then ▷ Comparing two sets
19: base← best
20: sbase ← sbest
21: ρ← P
22: else
23: if ρ > 0 then
24: decrement ρ
25: continue
26: else
27: k ← argmaxj sbase[j]
28: return base[k] ▷ Early Stop
29: end if
30: end if
31: end for
32: k ← argmaxj sbase[j]
33: return base[k] ▷ Terminate with highest score candidate

words unchanged in all our experiments so that the
comparison of different searched instructions can
be fair. Specifically, when applying GRIPS, we
extract the instruction from the prompt, then con-
duct the search only on the instruction, and finally
insert the edited instructions back into the prompt
for scoring (all of which use the same template).
Note that due to this design, GRIPS can also work
across different templates, and even apply directly
to the whole prompt, including the template words.

C Extensions and Variations of GRIPS

Greedy and Beam Search. The full-pseudo code
of GRIPS is shown in Algorithm 1 where we use
greedy search. The beam search modification is
described in Algorithm 2. We start with only one
base instruction (which is the initial task-specific or
agnostic instruction). In the next step we explore
edits for each base candidate and build a corre-
sponding candidate set (with scores). At the end of
the iteration, we take the B most promising or high-
est scoring path and proceed to the next iteration,
effectively pruning the rest. When the search termi-
nates, we find the best candidate from the filtered

Algorithm 3 GRIPS with Simulated Annealing
1: base← init
2: sbase ← score(base)
3: Ω← {del,swap,par,add}
4: ρ← P
5: for i = 1, · · · , n do
6: for j = 1, · · · ,m do
7: Sample e1, · · · , el ∈ Ω
8: C[j]← edit(e1, · · · , el)
9: s[j]← score(C[j])

10: end for
11: k ← argmaxj S[j]
12: best← C[k]
13: sbest ← s[k]
14: if sbest > sbase then
15: base← best
16: sbase ← sbest
17: ρ← P
18: else
19: if ρ > 0 then ▷ Added simulated annealing

20: λ← exp

(
sbest−sbase

Tmax×e−i/D

)
21: Sample α ∼ Bernoulli(λ)
22: if α then
23: base← best
24: sbase ← sbest
25: end if
26: decrement ρ
27: continue
28: else
29: return base
30: end if
31: end if
32: end for
33: return base

(remaining) set of B candidates.

Simulated Annealing. In this version of the
search algorithm (Algorithm 3), GRIPS is modi-
fied such that if during an iteration, a higher scoring
candidate is not found, then the best candidate will
be chosen for the subsequent iteration by sampling
from a Bernoulli distribution. The probability of
success is given by:

λ = exp

(
score− base score

Tmax × e−i/D

)
.

Here, score is the score of the highest scoring can-
didate, base score is the score of the base can-
didate, i is the index of the iteration, D, Tmax

are hyperparameters. This formulation has been
adapted from Pirlot (1996). The key idea behind
simulated annealing is to explore candidates even
if they do not score higher than the base. We ac-
cept worse candidates to allow for a more extensive
search for the global optimal in case we are stuck
at local optima or saddle point. The probability
of exploration is λ and it is directly proportional
to the difference in the scores. That is, candidates



closer in score to the base are likely to be explored
more. The parameter Tmax controls the overall
degree of exploration and D controls the decay in
exploration as the iterations (index i) progress (i.e.
move from exploration to exploitation). On com-
paring Simulated Annealing (Tmax = 10, D = 5)
with greedy search, we find that on average there
is no statistically significant difference in perfor-
mance. In fact, greedy search does slightly better
with average performance of 57.79 vs 57.46 which
is the average performance of simulated anneal-
ing search (on InstructGPT babbage). When we
look closely at the task-level, we observe a mixed
pattern where some tasks benefit from simulated
annealing whereas others do not.

Cross-Entropy Score Function. In §3.2 we
describe our score function that makes use of
BalancedAccuracy. While accuracy assigns a
binary value based on the prediction (max-prob)
and the ground truth, we can alternatively replace
it with (a negative of) weighted cross-entropy
(CE) term that makes use of the prediction dis-
tribution (over all labels). The weights for each
class/label are the same as the ones used in
BalancedAccuracy to re-weight accuracy across
S to count all classes equally. We use a neg-
ative sign along with CE since our algorithms
maximize the score and CE requires minimiza-
tion. We use α = 0.1 as the scales of CE and
BalancedAccuracy are very different. Applying
the aforementioned changes to the score function
yields an average accuracy of 55.08%, an increase
of +1.4 points (c.f. Table 2). This indicates that
performance of GRIPS using greedy search can
be further improved. We find that in this set-
ting we are able to differentiate among candidates
based on small differences in CE, even when using
BalancedAccuracy would have resulted in early
termination of search due to stop criteria. That is,
on average the search runs longer and early stop-
ping is invoked much later. However, this increases
the number of total evaluations and increases the
cost of the search by ≈1.5x, resulting in a trade-off.

Edit Operations. Fig. 5 shows the usage of edit
operations for different models to get to the final
searched instructions. We see that the swap, delete
and paraphrase operations are all frequently used.
The frequency of using an add operations is lower,
since it can only be sampled after a delete opera-

Model Pearson’s r p-value

GPT-2 XL 0.94 0.001
InstructGPT babbage 0.75 0.03
InstructGPT curie 0.51 0.20

Table 9: Pearson correlation coefficient between sen-
sitivity of the model on the task and performance im-
provement margin across models.

tion in the past. Nonetheless, the add operation is
used in search runs of roughly 37.5% of the tasks.
Next, we explore alternate choices of paraphrase
and add operations. Instead of using a Pegasus-
based paraphrase model, we replace it with another
T5-based paraphrase model14 and find the accuracy
changes from 53.68% to 53.33% which is a minute
difference. If the add operation is designed to add a
random phrase from the initial instructions instead
of phrases that are previously deleted, the average
accuracy slightly reduces to 53.42% (c.f. Table 2).

D Search Improvements Correlate with
Model Sensitivity to Instructions

We observe that GRIPS works better on some tasks
than others. Here, we seek to understand what fac-
tors might explain this variability. We find that a
model’s sensitivity to different instructions is an
important factor in explaining performance gains
from search. For a given task and model, we define
the model’s instruction sensitivity as the standard
deviation of the scores obtained by each candidate
task instruction in the first iteration of a search.
When this number is larger, the model performance
is more sensitive to changes in the instructions.
Interestingly, in Table 9, we find that instruction
sensitivity of a task correlates strongly (Pearson’s
r > 0.7) with the performance improvement mar-
gin for GPT-2 XL and InstructGPT babbagemod-
els (p < 0.05). However, for the curie engine
the correlation is relatively weaker (r = 0.51) and
not significant at p < 0.05. Overall, we observe
moderate to strong correlation between the sen-
sitivity value and the final improvement, and we
encourage future work to first check the sensitivity
of the task before running the search completely as
an indicator of the effectiveness of our method.

14Model available at: https://huggingface.co/
prithivida/parrot_paraphraser_on_T5

https://huggingface.co/prithivida/parrot_paraphraser_on_T5
https://huggingface.co/prithivida/parrot_paraphraser_on_T5


Instruction-Only Examples-Only Instruction + Examples

Before Manual Rewriting GRIPS Before Searched Before GRIPS
Model + Labels Examples

GPT-2 XL 48.38 47.70 (↑1) 48.12 (↑2) 53.68 (↑4) 51.50 56.00 (↑4) 52.40 54.40 (↑6)

InstructGPT babbage 55.37 55.50 (↑4) 55.37 (↑3) 57.79 (↑7) 55.29 56.25 (↑5) 55.70 57.88 (↑8)
InstructGPT curie 57.25 57.87 (↑3) 55.37 (↑3) 59.37 (↑5) 56.13 57.75 (↑4) 57.65 59.44 (↑6)

Table 10: Accuracy (%) comparison of manual rewriting of instructions, search over instructions (GRIPS) with
Instruction-Only prompts, search over Examples-Only prompts (§5.2), and GRIPS with Instruction + Examples
prompts (§5.8). In brackets we show the number of tasks (out of 8) that see a positive improvement in performance.
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Figure 5: Number of times the edit operations (delete, swap, paraphrase, and add) were used across tasks in a typical
search run, shown for different models.

E Details on Gradient-free Methods

E.1 Manual Rewriting

Mishra et al. (2022b) propose five broad sugges-
tions to rewrite instructions described below:
1. Specialized-Reframing: replacing generic, re-

dundant text and describe the low-level task
2. Pattern-Reframing: removing abstract details
3. Itemized-Reframing: split paragraphs into bul-

leted lists and rewriting negative sentences
(phrases like do not X) as semantically equiva-
lent positive instances (like do Y instead)

4. Decomposition-Reframing: break down tasks
with multi-step reasoning into simpler tasks

5. Restraining-Reframing: re-emphasizing con-
straints on output (label space for classification)

In lieu of final rewritten instructions for our se-
lected tasks, the rewriting process was done by
the first three authors, after carefully studying the
guidelines in the paper, in an iterative manner. The
first iteration involved identifying all the sugges-
tions (among 1-4) that could be applied to the in-
structions for each task. In the second iteration,
changes to the instructions were suggested based
on the guidelines. These changes were then re-
viewed by the other authors. Disagreements were
resolved through detailed discussions until a con-

sensus was reached in the third iteration. Sugges-
tion 5 is applicable for all tasks by adding an extra
line that mentions the set of possible labels (like
“expected output: A/B” where A and B are
the task labels) after the input portion of every
data point. This was straightforward and did not
require extensive discussions. The entire process
was dedicated nearly 5 hours of manual effort.

We found that in addition to suggestion 5, sug-
gestions 1 and 2 could be applied to all our task
instructions. We made references to the low-level
patterns of the task and fixed grammatical errors,
e.g., matching the capitalization of specific key
words that are both used in the instruction and the
input-output example pair. Most of our discus-
sions were focused on resolving disagreements in
rephrasing abstract or vague phrases used in the in-
struction. Within suggestion 3, replacing negative
phrases with equivalent positive phrases was more
common that itemization. The latter was only use-
ful for Task 019 for which the original instruction
was exceptionally long. We did not feel the need
to decompose any task and use suggestion 4.

Unlike Mishra et al. (2022b), we find that includ-
ing an extra sentence in the prompt to reiterate the
label space (suggestion 5) indicated as Labels in
Table 10) can hurt performance for InstructGPT
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Figure 6: Task-wise comparison of our GRIPS search over instructions (dotted) with search over exemplar prompts
(dashed) across model for the same data and computational budget.

models. The reverse is true for GPT-2 XL, where
there is some performance gain. This might be
because Mishra et al. (2022b) view classification
as a generation task whereas we directly calculate
probabilities of the label tokens using the LM.

E.2 Example Search

Fig. 6 shows the task-level comparison of perfor-
mance of the two search paradigms described in
§5.2. For most tasks on GPT-2 XL, the perfor-
mance of the searched Example-Only prompt is
superior to the searched Instruction-Only prompt
(also reflected in Tables 3 and 10). On an aver-
age, for InstructGPT models, purely instructional
(or Instruction-Only) prompts searched through
GRIPS outperform the searched Example-Only
prompts (based on margin of improvement). How-
ever, there is a lot of variability across tasks, more
so in the case of InstructGPT curie.

F Task Agnostic Instructions

In Table 11, we compare task-specific and task-
agnostic instructions. As mentioned in §5.4, task-
specific instructions are sampled directly from
the NATURAL-INSTRUCTIONS dataset. For task-
agnostic instructions, we follow the template “You
will be given a task. Read and understand the
task carefully, and appropriately answer [list
of labels].” These instructions describe the
possible labels but do not contain any other mean-
ingful information about the task. Given, that in
§5.4 we work with Instruction-Only prompts, for
task-agnostic instructions no additional informa-
tion is provided to model about how to complete
the task and when to output each label. The list of
labels for each task is mentioned in Table 8. This
means that tasks sharing the same label space corre-

spond to the same task-agnostic instruction (shown
in Table 11), even if the tasks are entirely different.

G Instructions after GRIPS

Tables 12, and 13 contain the original and searched
instructions for the all the tasks not discussed in
§5.7. Manual observation and comparison reveals
that the searched instructions are often semantically
incoherent or confusing. Furthermore, for several
tasks (069, 137 and 139), search using GPT-2 XL
terminates without finding a better candidate for
instruction and the original instruction is returned.
This happens if the edited candidates do not im-
prove the score over the base and the search runs
out of patience. We observe that 68.5% of the
searched instructions are shorter than the original,
and 87.5% of them contain some label information
pertinent to the task.



Task ID Task-Specific Instructions Task-Agnostic Instructions

019 Indicate with ‘Yes‘ if the given question involves the provided reasoning
‘Category‘. Indicate with ‘No‘, otherwise. We define five categories · · ·

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘Yes’ or ‘No’.

021 A question that is free of any grammatical or logical errors, should be
labeled ‘yes’, otherwise it should be indicated as ‘no’. A question is
grammatically correct if all its entities i.e. nouns, verbs, adjectives,
prepositions, pronouns, adverbs are at appropriate position. A question
is logically correct if the semantic makes sense.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘yes’ or ‘no’.

022 Read the given context and if the the context is inappropriate (e.g.,
pornographic) or nonsensical (e.g., cannot determine what happenings
the context is about), indicate via "yes". Otherwise, respond via "no"

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘yes’ or ‘no’.

050 You are given a sentence and a question in the input. If information
provided in the sentence is enough to answer the question, label "Yes",
otherwise label "No".Things to avoid: Do not use any facts other than
those provided in the sentence while labeling "Yes" or "No" . Emphasis
& Caution: There are only 2 types of valid responses: Yes and No.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘Yes’ or ‘No’.

069 In this task, you will be shown a short story with a beginning, two
potential middles, and an ending. Your job is to choose the middle
statement that makes the story coherent / plausible by indicating 1 or 2
in the output. If both sentences are plausible, pick the one that makes
most sense.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘1’ or ‘2’.

137 Given a prompt and two completions from a language model, select the
completion that is the least toxic with respect to continuing the prompt.
Toxicity is defined as a rude, disrespectful, or unreasonable statement
that is likely to make you leave a discussion. Generate either Completion
A or Completion B.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘Completion A’ or ‘Completion B’.

139 Given a prompt and two completions from a language model, select the
completion that is more topical with respect to continuing the prompt.
A prompt-completion pair is defined to be topical if the completion
maintains relevance and logical succession (i.e. stays on topic) with
the prompt. The flow from the prompt to the completion should be as
reasonable as possible. Generate either Completion A or Completion B.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘Completion A’ or ‘Completion B’.

195 In this task, you are given a text from tweets. Your task is to classify
given tweet text into two categories: 1) positive, and 2) negative based
on its content.

You will be given a task. Read and understand the task carefully, and
appropriately answer ‘positive’ or ‘negative’.

Table 11: Examples of task-specific and task-agnostic instructions for each task. We do not show the entire
instruction for Task 019 for brevity (refer to ‘original instruction’ Table 13 for the complete version).

Task ID Model After Search Instructions

069

Original In this task, you will be shown a short story with a beginning, two potential middles, and an ending. Your job is to choose the
middle statement that makes the story coherent / plausible by indicating 1 or 2 in the output. If both sentences are plausible,
pick the one that makes most sense.

GPT-2 XL Returned Original

InstructGPT babbage This task is being done, You will be shown a short story with a beginning, two potential middles, and an ending . Your job is
important to you If you want the story to be plausible, you should choose the middle statement that indicates 1 or 2 . If both
sentences are plausible, pick the one that makes most sense.

InstructGPT curie , you will be shown a short story with a beginning, two potential middles, and an ending . is to choose the middle statement
that makes the story coherent / plausible by indicating 1 or 2 in the output . If both sentences are plausible, pick the one that
makes most sense.

139

Original Given a prompt and two completions from a language model, select the completion that is more topical with respect to
continuing the prompt. A prompt-completion pair is defined to be topical if the completion maintains relevance and logical
succession (i.e. stays on topic) with the prompt. The flow from the prompt to the completion should be as reasonable as
possible. Generate either Completion A or Completion B.

GPT-2 XL Returned Original

InstructGPT babbage , select the completion that is more topical with respect to continuing the prompt . A prompt-completion pair Will be made .
select the completion that is more topical with respect to continuing the prompt . The flow from the prompt to the completion
should be as reasonable as possible . should be as reasonable as possible Will be made.

InstructGPT curie Given a prompt and two completions from a language model, select the completion that is more topical with respect to
continuing the prompt . The pair is prompt-completion is defined to be topical if the completion maintains relevance and
logical succession (i.e . The pair is prompt-completion . The flow should be as reasonable as possible . Generate either
Completion or Completion B.

Table 12: Examples of searched instructions of Tasks 069, and 139 for different models.



Task ID Model After Search Instructions

019

Original Indicate with ‘Yes‘ if the given question involves the provided reasoning ‘Category‘. Indicate with ‘No‘, otherwise. We define
five categories of temporal reasoning. First: "event duration" which is defined as the understanding of how long events last.
For example, "brushing teeth", usually takes few minutes. Second: "transient v. stationary" events. This category is based
on the understanding of whether an event will change over time or not. For example, the sentence "he was born in the U.S."
contains a stationary event since it will last forever; however, "he is hungry" contains a transient event since it will remain true
for a short period of time. Third: "event ordering" which is the understanding of how events are usually ordered in nature. For
example, "earning money" usually comes before "spending money". Fourth one is "absolute timepoint". This category deals
with the understanding of when events usually happen. For example, "going to school" usually happens during the day (not at
2 A.M). The last category is "frequency" which refers to how often an event is likely to be repeated. For example, "taking
showers" typically occurs 5 times a week, "going to saturday market" usually happens every few weeks/months, etc.

GPT-2 XL going to school . Indicate with ‘ No ‘, otherwise . We define five categories of temporal reasoning . First: "event duration"
which is defined as the understanding of how long events last . For example, "brushing teeth", takes few minutes . Second:
"transient v. stationary" events . This category is based on the understanding of whether an event will change over time or not
. For example, the sentence "he was born in the U.S." contains a stationary event since it will last forever; however, "he is
hungry" contains a transient event since it will remain true for a short period of time . Third: "event ordering" which is the
understanding of how events are ordered in nature . For example, "earning money" comes before "spending money". Fourth
one is "absolute timepoint". This category deals with the understanding of when events happen . For example, "going to
school" happens during the day (not at 2 A.M). The last category is "frequency" which refers to how often an event is likely to
be repeated . For example, "taking showers usually" typically occurs 5 times a week, "going to saturday market" happens
every few weeks/months, etc.

InstructGPT babbage Indicate with ‘ Yes ‘ if the given question involves the provided reasoning ‘ Category ‘ . Indicate with ‘ No ‘, otherwise .
We define five categories of temporal reasoning . First: "event duration" which is defined as the understanding of how long
events last . For example, "First", takes few minutes . Second: "transient v. stationary" events . This is a category is based
on the understanding of whether an event will change over time or not . For example, He was born in the US define five
categories of temporal reasoning a stationary event since it will last forever; however, "he Is hungry" define five categories of
temporal reasoning a transient event since it will remain true for a short period of time . Third: "event ordering" which is the
understanding of how events are ordered in nature . For example, "earning money" comes before "spending money". Fourth
one is "absolute timepoint". This is a category deals with the understanding of when events happen . For example, "going to
school" happens during the day (not at 2 A.M). The last category is "frequency" which refers to how often an event is likely to
be repeated . For example, "taking showers" typically occurs 5 times a week, "going to saturday market" a week.

Instruct GPT curie Indicate with ‘ Yes ‘ if the given question involves the provided reasoning ‘ Category ‘ . Indicate with ‘ No ‘, otherwise . We
define five categories of temporal reasoning . First: "event duration" which is defined as the understanding of how long events
last . For example, "brushing teeth", usually takes few minutes . Second: "transient v. stationary" events . This category
is based on the understanding of whether an event will change over time or not . For example, the sentence "he was born
in the U.S." contains a stationary event since it will last forever; however, "he is hungry" contains a transient event since it
will remain true for a short period of time . Third: "event ordering" which is the understanding of how events are usually
ordered in nature . For example, "earning money" usually comes before "spending money". Fourth one is "absolute timepoint".
This category deals with the understanding of when events usually happen . For example, "going to school" usually happens
during the day (not at 2 A.M). is "frequency" which refers to how often an event is likely to be repeated . For example, "taking
showers" typically occurs 5 times a week, "going to saturday market" usually happens every few weeks/months, etc.

022

Original Read the given context and if the the context is inappropriate (e.g., pornographic) or nonsensical (e.g., cannot determine what
happenings the context is about), indicate via "yes". Otherwise, respond via "no"

GPT-2 XL Read the given context and if the the context is inappropriate (e.g., pornographic) or nonsensical (e.g., Can’t decide what the
context is about, indicate via "yes". Otherwise, respond via "no".

InstructGPT babbage Read the given context and e.g., pornographic) or nonsensical (e.g . (e.g., pornographic) or nonsensical (e.g., cannot determine
what happenings the context is about), indicate via "yes". Otherwise, respond via "no".

Instruct GPT curie Read the given context and indicate via "yes (e.g., pornographic) or nonsensical (e.g., cannot determine what happenings the
context is about), indicate via "yes". Otherwise, respond via "no".

050

Original You are given a sentence and a question in the input. If information provided in the sentence is enough to answer the question,
label "Yes", otherwise label "No".Things to avoid: Do not use any facts other than those provided in the sentence while
labeling "Yes" or "No" . Emphasis & Caution: There are only 2 types of valid responses: Yes and No.

GPT-2 XL You are given a sentence and a question are given a sentence and a question . If information provided in the sentence is enough
to answer the question, Do not use any facts other than those provided in the sentence while labeling "Yes" or "No" otherwise
label "No". Things to avoid: Do not use any facts other than those provided in the sentence while labeling "Yes" or "No".
Emphasis & Caution: There are only 2 types of valid responses: Yes and No.

InstructGPT babbage You are given a sentence and a question in the input . If information provided in the sentence is enough to answer the question,
label "Yes", otherwise label "No". Things to avoid: Do not use any facts other than those provided in the sentence while
labeling "Yes" or "No". Emphasis & Caution: There.

InstructGPT curie You are given a sentence and a question in the input . If information provided in the sentence is enough to answer the question,
otherwise label "No". Things Things happen to avoid: Do not use any facts other than those provided in the sentence while
labeling "Yes" or "No". Emphasis & Caution: There are only 2 types of valid responses: Yes and No.

Table 13: Examples of searched instructions of Tasks 019, 022, and 050 for different models.


